Theory of Aerospace Propulsion, Second Edition, teaches engineering students how to utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems, be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions and preliminary aerothermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. This updated edition has been fully revised, with new content, new examples and problems, and improved illustrations to better facilitate learning of key concepts. Includes broader coverage than that found in most other books, including coverage of propellers, nuclear rockets, and space propulsion to allows analysis and design of more types of propulsion systemsProvides in-depth, quantitative treatments of the components of jet propulsion engines, including the tools for evaluation and component matching for optimal system performanceContains additional worked examples and progressively challenging end-of- chapter exercises that provide practice for analysis, preliminary design, and systems integration